An IoT-oriented Monitoring System for Smart Agriculture Applications

Luca Davoli, Alessandro Nicoli, Antonio Cilfone, Laura Belli, Gianluigi Ferrari
University of Parma
luca.davoli@unipr.it

IoT Vertical and Topical Summit for Agriculture - Monteriggioni (IT), May 8 - 9, 2018
● Introduction on IoT in the context of Smart Farming

● Wireless Sensor Networks (WSNs)

● Proposed architecture

● Future developments
Introduction

Highest opportunities in:
Smart Cities, Healthcare and Smart Agriculture

Farmers operate with sensors, drones,

Necessity of a dedicated IoT infrastructure
Agriculture is the field of study that is more suited to the implementation of these technologies and the one that will benefit more from them in the next years.
Wireless Sensor Network (WSN)

- Highly distributed networks of small, lightweight wireless nodes
- May be composed of hundreds or thousands of devices
- Node
 - Sensing
 - Processing
 - Communication
- Monitors the environment or system by measuring physical parameters
WSN Stack

Sub-GHz stack

- Sub-GHz-H
- Sub-GHz-T
- Sub-GHz-P

CoAP Application

- CoAP-H
- CoAP-P

IEEE 802.15.4 stack

- IPv6 + 6LowPAN
- IEEE 802.15.4 MAC
- IEEE 802.15.4 PHY

Requirements

- Weather resistant
- Reduced intrusiveness
- Open source
- Modularity
- Scalability (storage)
- Real-Time
- Inexpensive

May 9th, 2018

Luca Davoli, Ph.D. - luca.davoli@unipr.it
Sink ↔ crops network

WSN on a single tree

IEEE 802.15.4
6LoWPAN

SubGHz
(900MHz)
Local WSN

Sink and wind sensor
- Parallax MMA7455

Air temperature / humidity sensor
- DHT 22

Soil moisture sensor
- SeeedStudio Grove
WSN - Temperature/Humidity Node

- Based on Atmel SAM R21 XPro board
- Compliant with IEEE 802.15.4
- Running RIOT operating system
- Sampling at regular intervals from DHT22 sensor

- Different processing threads
 - **Request Manager Thread** responsible to initialize the board and generate secondary threads
● **Sensor Data Thread**
 ○ Retrieve data from sensors (16-bits temperature, 16-bits humidity, 8-bits checksum)
 ○ BIN-to-DEC conversion and adaptation

● **Request Manager Thread**
 ○ Request dispatcher distinguishing:
 ■ Incoming messages from the UST, with NULL content, asking for the last sensor data
 ■ Messages originated by the SDT, containing the last values read from the sensor → Local cache for speeding up the response
WSN - Soil Moisture Node

- Based on Atmel SAM R21 XPro board
- Sampling from SeeedStudio Grove sensor
- Visual feedback system based on 3 blinking led colors
 - Red: initializing mode
 - Green: board initialized, starting the control loop
 - Yellow: reading sensor
- Dual function
 ○ Border router for the local IEEE 802.15.4-based network
 ○ Gateway for interactions with remote sink (through the Sub-GHz network interface)

- Based on Raspberry Pi3 board
- NoSQL MongoDB database instance
- OpenLabs IEEE 802.15.4 transceiver
- Freakduino 900LR Sub-GHz node
- Sampling from 3-axis Freescale MMA7455 accelerometer sensor
● Accelerometer sensor initialization

● Control loop initialization

● Sensor data updating

● Incoming data from Sub-GHz channel handling
 ○ Command T: synchronization request to farmer’s sink, in order to obtain the updated timestamp (chronological order of sensed data)

● Manage incoming data from serial channel (as local sink node)
 ○ Command D: request for latest 3-axes wind samples (through the Freakduino interface)
Remote Sink Node

- Gathers all crop-related data coming from each WSN
- Placed at the farmer's house

- Based on Raspberry Pi3 board
- Freakduino 900LR board, providing Sub-GHz communication

- CoAP server
 - List of the monitored plants, through service and resource discovery mechanisms
 - Enables external CoAP clients to request information on each monitored plant on different WSN
Future developments

- Adoption of a routing protocol for local WSNs (e.g., RPL)
- Heterogeneity of sensors data
- Data visualisation
- Data analysis (Big Data, Business Intelligence, ….)
- Alternative long-range communication protocols (LoRA, Sigfox, ….)
- Alternative boards
- Business analysis on the proposed IoT architecture
An IoT-oriented Monitoring System for Smart Agriculture Applications

Luca Davoli, Alessandro Nicoli, Antonio Cilfone, Laura Belli, Gianluigi Ferrari
University of Parma - luca.davoli@unipr.it

IoT Vertical and Topical Summit for Agriculture - Monteriggioni (IT), May 8 - 9, 2018